1,119 research outputs found

    La presunción de inocencia y el escenario de la prueba penal

    Get PDF
    La STC 31/1981 estimó un recurso de amparo basado en vulneración de la presunción de inocencia con una doctrina que forzó una radical transformación de la justicia penal española. En este comentario se estudia esa transformación, desde una situación en que el papel que desempeñaba la prueba del juicio oral ¿y el propio juicio oral, en definitiva- era prácticamente nulo, pues las condenas se basaban en la instrucción de la causa, hasta la situación actual, en la que los tribunales penales deciden atendiendo prioritariamente a las pruebas del juicio oral y sólo excepcionalmente y con causa justificada a diligencias de instrucción no reproducidas en el juicio. Se presta especial atención a la evolución de la jurisprudencia, tanto a la del Tribunal Constitucional, inaugurada con la sentencia objeto de comentario, como a la del Tribunal Supremo.Derecho Público I

    Treatment of end-of-life concrete in an innovative heating-air classification system for circular cement-based products

    Get PDF
    A stronger commitment towards Green Building and circular economy, in response to environmental concerns and economic trends, is evident in modern industrial cement and concrete production processes. The critical demand for an overall reduction in the environmental impact of the construction sector can be met through the consumption of high-grade supplementary raw materials. Advanced solutions are under development in current research activities that will be capable of up-cycling larger quantities of valuable raw materials from the fine fractions of End-of-Life (EoL) concrete waste. New technology, in particular the Heating-Air classification System (HAS), simultaneously applies a combination of heating and separation processes within a fluidized bed-like chamber under controlled temperatures (±600 °C) and treatment times (25–40 s). In that process, moisture and contaminants are removed from the EoL fine concrete aggregates (0–4 mm), yielding improved fine fractions, and ultrafine recycled concrete particles (<0.125 mm), consisting mainly of hydrated cement, thereby adding value to finer EoL concrete fractions. In this study, two types of ultrafine recycled concrete (either siliceous or limestone EoL concrete waste) are treated in a pilot HAS technology for their conversion into Supplementary Cementitious Material (SCM). The physico-chemical effect of the ultrafine recycled concrete particles and their potential use as SCM in new cement-based products is assessed by employing substitutions of up to 10% of the conventional binder. The environmental viability of their use as SCM is then evaluated in a Life Cycle Assessment (LCA). The results demonstrated accelerated hydration kinetics of the mortars that incorporated these SCMs at early ages and higher mechanical strengths at all curing ages. Optimal substitutions were established at 5%. The results suggested that the overall environmental impact could be reduced by up to 5% when employing the ultrafine recycled concrete particles as SCM in circular cement-based products, reducing greenhouse gas emissions by as much as 41 kg CO2 eq./ton of cement (i.e. 80 million tons CO2 eq./year). Finally, the environmental impacts were reduced even further by running the HAS on biofuel rather than fossil fuel.The authors of the present paper, prepared in the framework ofthe Project VEEP "Cost-Effective Recycling of C&DW in High AddedValue Energy Efficient Prefabricated Concrete Components forMassive Retrofitting of our Built Environment", wish to acknowl-edge the European Commission for its support. This project hasreceived funding from the European Union’s Horizon 2020 researchand innovation programme under grant agreement No 723582.This paper reflects only the author’s view and the European Com-mission is not responsible for any use that may be made of theinformation it contains.The authors are also grateful to the Spanish Ministry of Science,Innovation and Universities (MICIU) and the European RegionalDevelopment Fund (FEDER) for funding this line of research(RTI2018-097074-B-C21)

    Estructura y evolución geodinámica del extremo noreste del margen continental catalán durante el Neógeno

    Get PDF
    The neogene structure and geodynamic evolution of the continental margin between the Cape Bagur and the Cape Creus, has heen studied by means of multichannel seismic profiles. This structure is explained in a regional geodynarnic framework: the opening of the Western Mediterranean and the changes of the relative motion between the European and Afncan plates (NNE in the Latest Oligocene and NO in the Tortonian age). Major margin structures consist of a set of structural highs, grabens and semigrabens infilled by Neogene-Quaternary sediments, whose thicknesses range from 400 m near the coast to 4.000 m in the continental slope. This structures are associated to NE-SW to N-S and NWSE to WNW-ESE fault systems. The NE-SW to N-S system produces the structural configuration of the continental margin and the KW-SE to WNW-ESE is associated to the main basins: Rosas and Bagur. Three main units have been differenciated in the seismic profiles overlying a pre-Neogene basement: the two lowest units (Oligocene?- Lower Miocene and Middle-Upper Miocene units) are associated with the development of neogene deposits, whilst the third consist of post-Messinian deposits (Plio-Quaternary unit). The proposed geodynamic evolution of the area includes two stages: (1) latest Oligocene-Burdigalian rifting where extensión was accomodated by NE-SW normal faults and NW-SE transfer faults related to the Burdigalian drifting, (2) Tortonian to Present stage characterized by the blocking of the NE-SW faults and the extensional development of the NW-SE fault trend. Each stage involves a basin geometry and a style of faulting

    A multi-layered Bayesian network model for structured document retrieval

    Get PDF
    New standards in document representation, like for example SGML, XML, and MPEG-7, compel Information Retrieval to design and implement models and tools to index, retrieve and present documents according to the given document structure. The paper presents the design of an Information Retrieval system for multimedia structured documents, like for example journal articles, e-books, and MPEG-7 videos. The system is based on Bayesian Networks, since this class of mathematical models enable to represent and quantify the relations between the structural components of the document. Some preliminary results on the system implementation are also presented

    Compounds with a ‘stuffed’ anti-bixbyite-type structure, analysed in terms of the Zintl–Klemm and coordination-defect concepts

    Get PDF
    Compounds with a ‘stuffed anti-bixbyite’ structure, such as Li3AlN2, were analysed in terms of both the extended Zintl–Klemm concept and the coordination-defect concept. For the first time, inorganic crystal structures are seen as a set of ‘multiple resonance structures’ (Klemm pseudo-structures) which co-exist as the result of unexpected electron transfers between any species pair comprising either like or unlike atoms, cations or anions. If this is the driving force controlling crystal structures, the conventional oxidation states assigned to cations and anions lose some of their usefulness

    Classical-Quantum Correspondence by Means of Probability Densities

    Get PDF
    Within the frame of the recently introduced phase space representation of non relativistic quantum mechanics, we propose a Lagrangian from which the phase space Schrodinger equation can be derived. From that Lagrangian, the associated conservation equations, according to Noether's theorem, are obtained. This shows that one can analyze quantum systems completely in phase space as it is done in coordinate space, without additional complications

    Structural stability of Fe5Si3 and Ni2Si studied by high-pressure x-ray diffraction and ab initio total-energy calculations

    Full text link
    We performed high-pressure angle dispersive x-ray diffraction measurements on Fe5Si3 and Ni2Si up to 75 GPa. Both materials were synthesized in bulk quantities via a solid-state reaction. In the pressure range covered by the experiments, no evidence of the occurrence of phase transitions was observed. On top of that, Fe5Si3 was found to compress isotropically, whereas an anisotropic compression was observed in Ni2Si. The linear incompressibility of Ni2Si along the c-axis is similar in magnitude to the linear incompressibility of diamond. This fact is related to the higher valence-electron charge density of Ni2Si along the c-axis. The observed anisotropic compression of Ni2Si is also related to the layered structure of Ni2Si where hexagonal layers of Ni2+ cations alternate with graphite-like layers formed by (NiSi)2- entities. The experimental results are supported by ab initio total-energy calculations carried out using density functional theory and the pseudopotential method. For Fe5Si3, the calculations also predicted a phase transition at 283 GPa from the hexagonal P63/mcm phase to the cubic structure adopted by Fe and Si in the garnet Fe5Si3O12. The room-temperature equations of state for Fe5Si3 and Ni2Si are also reported and a possible correlation between the bulk modulus of iron silicides and the coordination number of their minority element is discussed. Finally, we report novel descriptions of these structures, in particular of the predicted high-pressure phase of Fe5Si3 (the cation subarray in the garnet Fe5Si3O12), which can be derived from spinel Fe2SiO4 (Fe6Si3O12).Comment: 44 pages, 13 figures, 3 Table
    corecore